Serogroup Conversion of Vibrio cholerae in Aquatic Reservoirs
نویسندگان
چکیده
The environmental reservoirs for Vibrio cholerae are natural aquatic habitats, where it colonizes the chitinous exoskeletons of copepod molts. Growth of V. cholerae on a chitin surface induces competence for natural transformation, a mechanism for intra-species gene exchange. The antigenically diverse O-serogroup determinants of V. cholerae are encoded by a genetically variable biosynthetic cluster of genes that is flanked on either side by chromosomal regions that are conserved between different serogroups. To determine whether this genomic motif and chitin-induced natural transformation might enable the exchange of serogroup-specific gene clusters between different O serogroups of V. cholerae, a strain of V. cholerae O1 El Tor was co-cultured with a strain of V. cholerae O139 Bengal within a biofilm on the same chitin surface immersed in seawater, and O1-to-O139 transformants were obtained. Serogroup conversion of the O1 recipient by the O139 donor was demonstrated by comparative genomic hybridization, biochemical and serological characterization of the O-antigenic determinant, and resistance of O1-to-O139 transformants to bacteriolysis by a virulent O1-specific phage. Serogroup conversion was shown to have occurred as a single-step exchange of large fragments of DNA. Crossovers were localized to regions of homology common to other V. cholerae serogroups that flank serogroup-specific encoding sequences. This result and the successful serogroup conversion of an O1 strain by O37 genomic DNA indicate that chitin-induced natural transformation might be a common mechanism for serogroup conversion in aquatic habitats and for the emergence of V. cholerae variants that are better adapted for survival in environmental niches or more pathogenic for humans.
منابع مشابه
Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola
Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2...
متن کامل[Ecology of Vibrio cholerae serogroup 01 in aquatic environments].
The endemic and seasonal nature of cholera depends upon the survival of Vibrio cholerae 01 in a viable but not necessarily culturable state in ecologic niches in aquatic environments during interepidemic periods. To understand the ecology of V. cholerae it is necessary to know which aquatic ecosystems can harbor it and thus contribute to the endemic presence of cholera in Latin America. This ar...
متن کامل[Viability of Vibrio cholerae O1 in different types of water under experimental conditions].
The endemic and seasonal nature of cholera depends upon the survival of Vibrio cholerae O1 in a viable but not necessarily culturable state in ecological niches in aquatic environments during inter-epidemic periods, and investigation on the survival of this microorganism in such sites is therefore of the utmost importance. Weekly water aliquots were thus taken from 2 ponds and 2 rivers in the S...
متن کاملThe Vibrio cholerae type VI secretion system displays antimicrobial properties.
The acute diarrheal disease cholera is caused by the marine bacterium Vibrio cholerae. A type VI secretion system (T6SS), which is structurally similar to the bacteriophage cell-puncturing device, has been recently identified in V. cholerae and is used by this organism to confer virulence toward phagocytic eukaryotes, such as J774 murine macrophages and Dictyostelium discoideum. We tested the i...
متن کاملFish as Reservoirs and Vectors of Vibrio cholerae
Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Pathogens
دوره 3 شماره
صفحات -
تاریخ انتشار 2007